Copied to
clipboard

G = C42.S3order 96 = 25·3

1st non-split extension by C42 of S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.1S3, C6.2C42, C6.4M4(2), C3⋊C83C4, C31(C8⋊C4), C4.19(C4×S3), (C4×C12).7C2, (C2×C12).3C4, (C2×C4).88D6, C12.24(C2×C4), (C2×C4).2Dic3, C2.3(C4×Dic3), C2.1(C4.Dic3), C22.7(C2×Dic3), (C2×C12).102C22, (C2×C3⋊C8).7C2, (C2×C6).25(C2×C4), SmallGroup(96,10)

Series: Derived Chief Lower central Upper central

C1C6 — C42.S3
C1C3C6C12C2×C12C2×C3⋊C8 — C42.S3
C3C6 — C42.S3
C1C2×C4C42

Generators and relations for C42.S3
 G = < a,b,c | a6=c4=1, b4=a3, bab-1=a-1, ac=ca, cbc-1=a3b >

2C4
2C4
3C8
3C8
3C8
3C8
2C12
2C12
3C2×C8
3C2×C8
3C8⋊C4

Smallest permutation representation of C42.S3
Regular action on 96 points
Generators in S96
(1 18 67 5 22 71)(2 72 23 6 68 19)(3 20 69 7 24 65)(4 66 17 8 70 21)(9 30 33 13 26 37)(10 38 27 14 34 31)(11 32 35 15 28 39)(12 40 29 16 36 25)(41 83 89 45 87 93)(42 94 88 46 90 84)(43 85 91 47 81 95)(44 96 82 48 92 86)(49 63 73 53 59 77)(50 78 60 54 74 64)(51 57 75 55 61 79)(52 80 62 56 76 58)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 77 47 15)(2 74 48 12)(3 79 41 9)(4 76 42 14)(5 73 43 11)(6 78 44 16)(7 75 45 13)(8 80 46 10)(17 52 88 31)(18 49 81 28)(19 54 82 25)(20 51 83 30)(21 56 84 27)(22 53 85 32)(23 50 86 29)(24 55 87 26)(33 69 57 89)(34 66 58 94)(35 71 59 91)(36 68 60 96)(37 65 61 93)(38 70 62 90)(39 67 63 95)(40 72 64 92)

G:=sub<Sym(96)| (1,18,67,5,22,71)(2,72,23,6,68,19)(3,20,69,7,24,65)(4,66,17,8,70,21)(9,30,33,13,26,37)(10,38,27,14,34,31)(11,32,35,15,28,39)(12,40,29,16,36,25)(41,83,89,45,87,93)(42,94,88,46,90,84)(43,85,91,47,81,95)(44,96,82,48,92,86)(49,63,73,53,59,77)(50,78,60,54,74,64)(51,57,75,55,61,79)(52,80,62,56,76,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,77,47,15)(2,74,48,12)(3,79,41,9)(4,76,42,14)(5,73,43,11)(6,78,44,16)(7,75,45,13)(8,80,46,10)(17,52,88,31)(18,49,81,28)(19,54,82,25)(20,51,83,30)(21,56,84,27)(22,53,85,32)(23,50,86,29)(24,55,87,26)(33,69,57,89)(34,66,58,94)(35,71,59,91)(36,68,60,96)(37,65,61,93)(38,70,62,90)(39,67,63,95)(40,72,64,92)>;

G:=Group( (1,18,67,5,22,71)(2,72,23,6,68,19)(3,20,69,7,24,65)(4,66,17,8,70,21)(9,30,33,13,26,37)(10,38,27,14,34,31)(11,32,35,15,28,39)(12,40,29,16,36,25)(41,83,89,45,87,93)(42,94,88,46,90,84)(43,85,91,47,81,95)(44,96,82,48,92,86)(49,63,73,53,59,77)(50,78,60,54,74,64)(51,57,75,55,61,79)(52,80,62,56,76,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,77,47,15)(2,74,48,12)(3,79,41,9)(4,76,42,14)(5,73,43,11)(6,78,44,16)(7,75,45,13)(8,80,46,10)(17,52,88,31)(18,49,81,28)(19,54,82,25)(20,51,83,30)(21,56,84,27)(22,53,85,32)(23,50,86,29)(24,55,87,26)(33,69,57,89)(34,66,58,94)(35,71,59,91)(36,68,60,96)(37,65,61,93)(38,70,62,90)(39,67,63,95)(40,72,64,92) );

G=PermutationGroup([[(1,18,67,5,22,71),(2,72,23,6,68,19),(3,20,69,7,24,65),(4,66,17,8,70,21),(9,30,33,13,26,37),(10,38,27,14,34,31),(11,32,35,15,28,39),(12,40,29,16,36,25),(41,83,89,45,87,93),(42,94,88,46,90,84),(43,85,91,47,81,95),(44,96,82,48,92,86),(49,63,73,53,59,77),(50,78,60,54,74,64),(51,57,75,55,61,79),(52,80,62,56,76,58)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,77,47,15),(2,74,48,12),(3,79,41,9),(4,76,42,14),(5,73,43,11),(6,78,44,16),(7,75,45,13),(8,80,46,10),(17,52,88,31),(18,49,81,28),(19,54,82,25),(20,51,83,30),(21,56,84,27),(22,53,85,32),(23,50,86,29),(24,55,87,26),(33,69,57,89),(34,66,58,94),(35,71,59,91),(36,68,60,96),(37,65,61,93),(38,70,62,90),(39,67,63,95),(40,72,64,92)]])

C42.S3 is a maximal subgroup of
C42.D6  C42.2D6  C42.7D6  C42.8D6  D6.C42  C42.243D6  S3×C8⋊C4  C42.182D6  Dic35M4(2)  M4(2).22D6  C42.27D6  D63M4(2)  C4×C4.Dic3  C42.270D6  C12.5C42  C42.187D6  C42.47D6  C42.48D6  C42.51D6  C42.210D6  C42.56D6  C42.59D6  C42.62D6  C42.64D6  C42.65D6  C42.68D6  C42.70D6  C42.71D6  C42.72D6  C42.74D6  C42.76D6  C42.77D6  C42.80D6  C42.82D6  C42.D9  C3⋊C8⋊Dic3  C122.C2  C30.21C42  C42.D15  C30.3C42  C30.11C42
C42.S3 is a maximal quotient of
C42.279D6  C12.15C42  (C2×C12)⋊3C8  C42.D9  C3⋊C8⋊Dic3  C122.C2  C30.21C42  C42.D15  C30.3C42  C30.11C42

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H6A6B6C8A···8H12A···12L
order12223444444446668···812···12
size11112111122222226···62···2

36 irreducible representations

dim11111222222
type++++-+
imageC1C2C2C4C4S3Dic3D6M4(2)C4×S3C4.Dic3
kernelC42.S3C2×C3⋊C8C4×C12C3⋊C8C2×C12C42C2×C4C2×C4C6C4C2
# reps12184121448

Matrix representation of C42.S3 in GL3(𝔽73) generated by

100
011
0720
,
2700
04467
02329
,
2700
03060
01343
G:=sub<GL(3,GF(73))| [1,0,0,0,1,72,0,1,0],[27,0,0,0,44,23,0,67,29],[27,0,0,0,30,13,0,60,43] >;

C42.S3 in GAP, Magma, Sage, TeX

C_4^2.S_3
% in TeX

G:=Group("C4^2.S3");
// GroupNames label

G:=SmallGroup(96,10);
// by ID

G=gap.SmallGroup(96,10);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,217,55,86,2309]);
// Polycyclic

G:=Group<a,b,c|a^6=c^4=1,b^4=a^3,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations

Export

Subgroup lattice of C42.S3 in TeX

׿
×
𝔽